

Being alive OR Being dead

Fundamentos Básicos de la Computación Cuántica

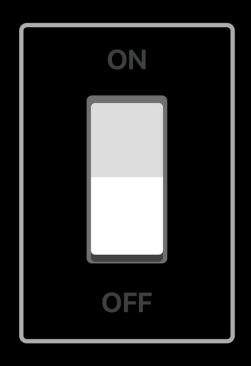
QISKIT FALL FESLT 2025

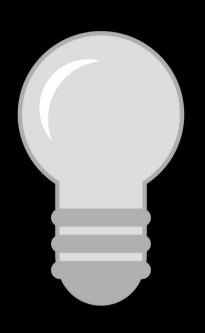
Marcela Herrera

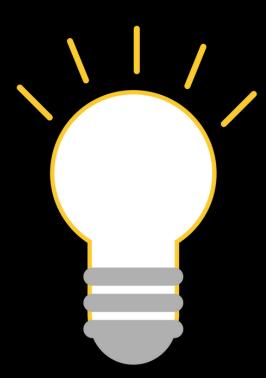
Universidad del Valle

From bits to qubits

bit

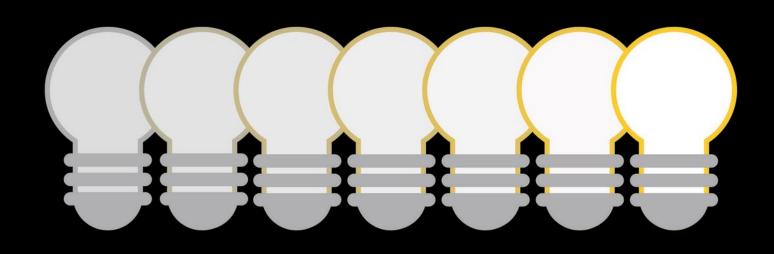






What is a qubit?

Qubit: Quantum bit



State superposition

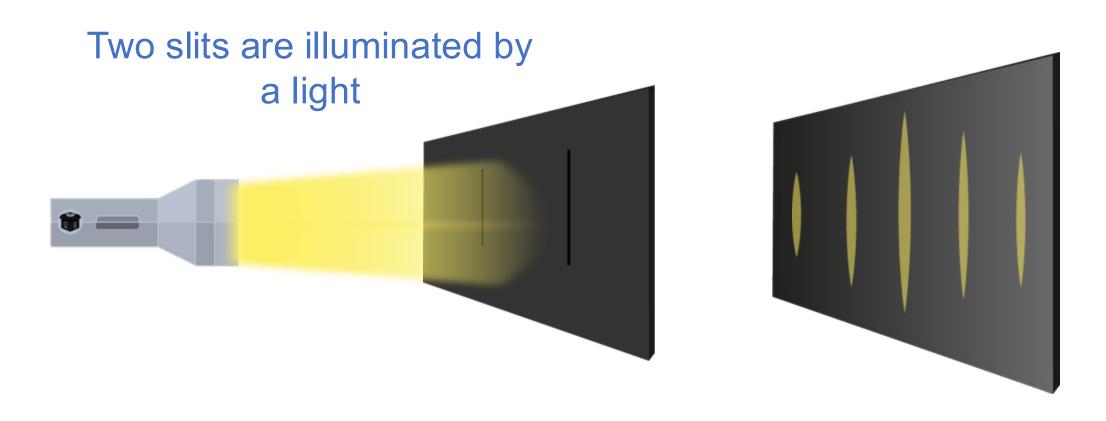
Awake

Sleep

Superposition

awake but at what cost

Wave-particle duality



BITS

2 BITS

0 1

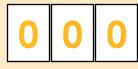
3 BITS

0 1 1

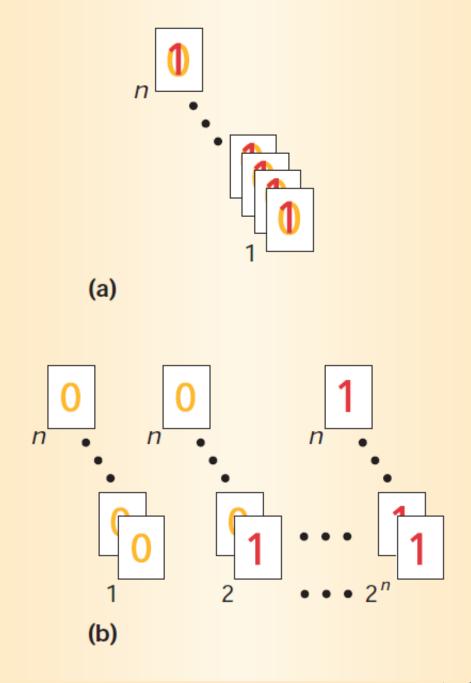
QUBITS

2 QUBITS

3 QUBITS



1	0	0



To achieve the same degree of parallelism as (a) 300 quantum processors(n = 300), we would need

(b) $2^{300} \approx 2.04 \times 10^{90}$ classical processors

Since 2³⁰⁰ is more than the number of particles in the universe, to say that quantum computing enables an astronomical increase in parallelism is obviously an understatement

Quantum state

$$|cat\rangle = \alpha$$
 \Rightarrow \Rightarrow

$$|\Psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

with a and β called the amplitudes of the states. Amplitudes are generally complex numbers

$$|\alpha|^2 + |\beta|^2 = 1$$

This is called a **normalization** rule

1. The quantum state of a spinning coin can be written as a superposition of heads and tails. Using heads as $|1\rangle$ and tails as $|0\rangle$, the quantum state of the coin is

$$|\text{coin}\rangle = \frac{1}{\sqrt{2}} (|1\rangle + |0\rangle).$$

What is the probability of getting heads?

The amplitude of $|1\rangle$ is $\beta = 1/\sqrt{2}$, so $|\beta|^2 = \left(1/\sqrt{2}\right)^2 = 1/2$. So the probability is 0.5, or 50%.

2. A weighted coin has twice the probability of landing on heads vs. tails. What is the state of the coin in "ket" notation?

 $P_{\text{heads}} + P_{\text{tails}} = 1$ (Normalization Condition)

$$P_{\text{heads}} = 2P_{\text{tails}}$$
 (Statement in Example)
 $\Rightarrow P_{\text{tails}} = \frac{1}{3} = \alpha^2$ $\Rightarrow \alpha = \sqrt{\frac{1}{3}}, \ \beta = \sqrt{\frac{2}{3}}$
 $\Rightarrow P_{\text{heads}} = \frac{2}{3} = \beta^2$ $||\cos \alpha|| = \sqrt{\frac{1}{3}}||0\rangle| + \sqrt{\frac{2}{3}}||1\rangle|.$

$$\frac{1}{\sqrt{2}}\left(|0\rangle + e^{i\pi/6}|1\rangle\right)$$

Is this state normalized?

$$|\alpha|^2 + |\beta|^2 = 1$$
 Normalization rule

$$\left|\frac{1}{\sqrt{2}}\right|^2 = \frac{1}{2}$$

$$\left| \frac{e^{i\pi/6}}{\sqrt{2}} \right|^2 = \frac{e^{i\pi/6}}{\sqrt{2}} \frac{e^{-i\pi/6}}{\sqrt{2}} = \frac{e^0}{2} = \frac{1}{2}$$

$$\frac{1}{\sqrt{3}} \left(\sqrt{2} |0\rangle + |1\rangle \right)$$

$$\left| \sqrt{\frac{2}{3}} \right|^2 = \frac{2}{3}$$

$$|\alpha|^2 + |\beta|^2 = 1$$
 Normalization rule

$$\left|\frac{1}{\sqrt{3}}\right|^2 = \frac{1}{3}$$

Measuring a qubit does not produce an average of $|0\rangle$ and $|1\rangle$: the qubit collapses to one definite state. A single measurement cannot reveal a or β ; many identical qubits are needed to observe how often outcomes collapse to $|0\rangle$ or $|1\rangle$

Matrix representation

When writing a single qubit in a superposition $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$ In matrix representation, a qubit is written as a two-dimensional vector where the amplitudes are the components of the vector

$$|\psi\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

The states $|0\rangle$ and $|1\rangle$ are usually represented as

$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad |1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

Changing a qubit's state through a physical action mathematically corresponds to multiplying the qubit vector $|\psi\rangle$ by some **unitary matrix** U so that after the operation the state is now

$$|\psi'\rangle = U|\psi\rangle.$$

A matrix U is unitary if the matrix product of U and its conjugate transpose U^{\dagger} (called U-dagger) multiply to give the identity matrix:

$$UU^{\dagger} = U^{\dagger}U = \mathbb{I}$$

Review: matrix multiplication

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix}$$

$$\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} ax + by + cz \\ dx + ey + fx \\ gx + hy + iz \end{pmatrix}$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} w & x \\ y & z \end{pmatrix} = \begin{pmatrix} aw + by & ax + bz \\ cw + dy & cx + dz \end{pmatrix}$$

Review: matrix multiplication

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} w \\ x \\ y \\ z \end{pmatrix} = \begin{pmatrix} w \\ x \\ y \\ z \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} w \\ x \\ y \\ z \end{pmatrix} = \begin{pmatrix} w \\ y \\ x \\ z \end{pmatrix}$$

Review: transpose of a matrix

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \qquad A^{T} = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$$

$$A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \qquad A^{T} = \begin{pmatrix} a & d & g \\ b & e & h \\ c & f & i \end{pmatrix}$$

$$A^{T} = \begin{pmatrix} a & d & g \\ b & e & h \\ c & f & i \end{pmatrix}$$

What is the conjugate transpose of the following matrix?

$$A = \begin{pmatrix} 1 & i \\ 1 & i \end{pmatrix}$$

$$A^{\dagger} = \begin{pmatrix} 1 & 1 \\ -i & -i \end{pmatrix}$$

Is the matrix A unitary?

$$UU^{\dagger} = U^{\dagger}U = \mathbb{I}$$

$$A = \begin{pmatrix} 1 & i \\ 1 & i \end{pmatrix}$$

$$AA^{\dagger} = \begin{pmatrix} 1 & i \\ 1 & i \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -i & -i \end{pmatrix}$$

$$A^{\dagger} = \begin{pmatrix} 1 & 1 \\ -i & -i \end{pmatrix}$$

$$= 2 \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \neq \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

The operator X is unitary?

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad X^{\dagger} = X^{T} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$X^{\dagger}X = XX = egin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix} egin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix} = egin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix} = I$$

What is the result of applying the unitary operator X onto a $|0\rangle$ state qubit?

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad |0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

$$X|0\rangle = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = |1\rangle.$$

Operations on one classical bit

Reversible computing

Reversible means given the operation and output value, you can find the input values

Quantum computers use only reversible operation

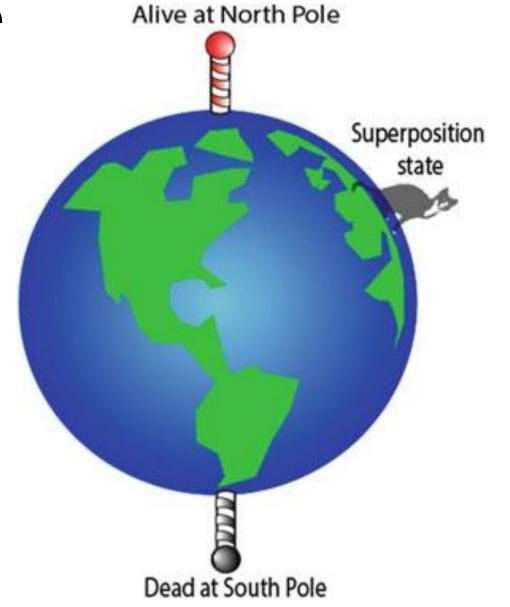
Check Your Understanding

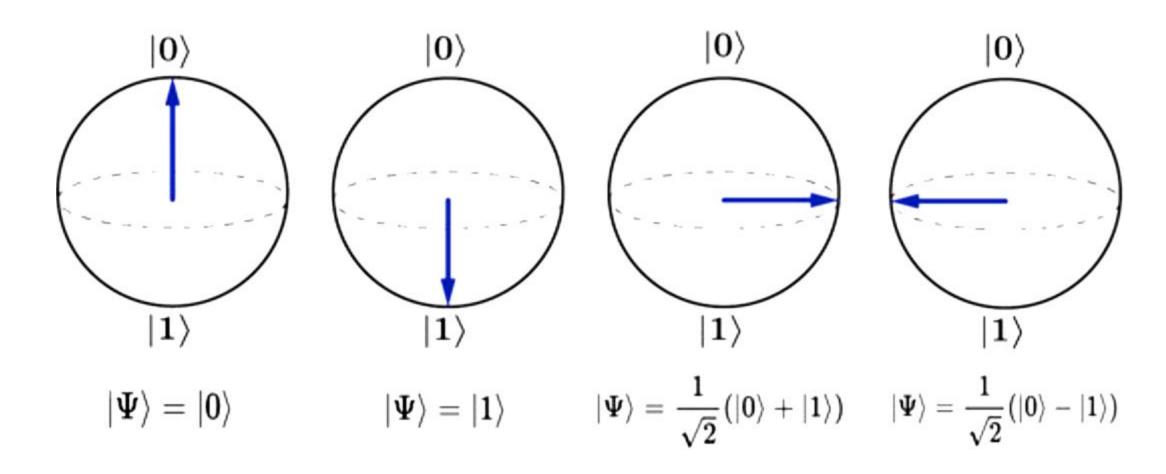
Assume a flipped coin can be measured as either heads (H) or tails (T).

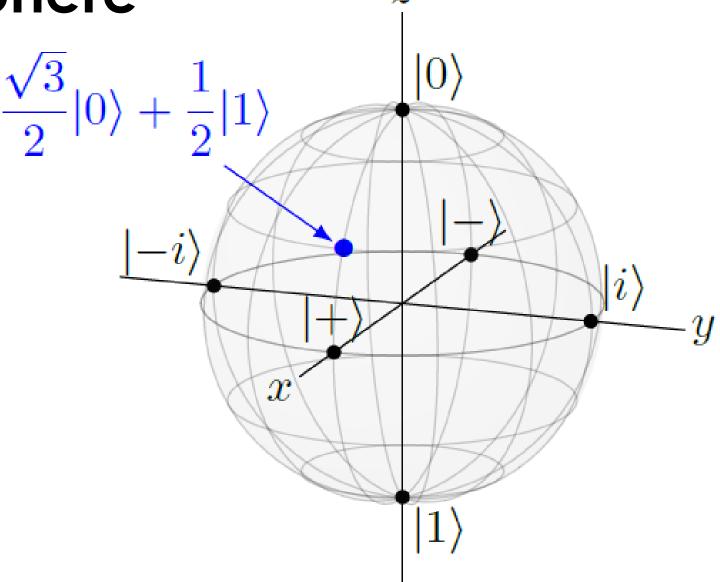
- a) If the coin is in a normalized state $\frac{1}{\sqrt{10}}|H\rangle + \frac{3}{\sqrt{10}}|T\rangle$, what is the probability that the coin will be tails?
- b) During a flip, the coin is in a state $\frac{1}{3}|H\rangle + \frac{2}{3}|T\rangle$. Is this state normalized?
- c) A machine is built to flip coins and put them into a state $\frac{1}{3}|H\rangle + \frac{\sqrt{3}}{2}|T\rangle$ when flipped. If 100 coins are flipped, how many coins should land on tails?
- d) What is the matrix product of the matrix

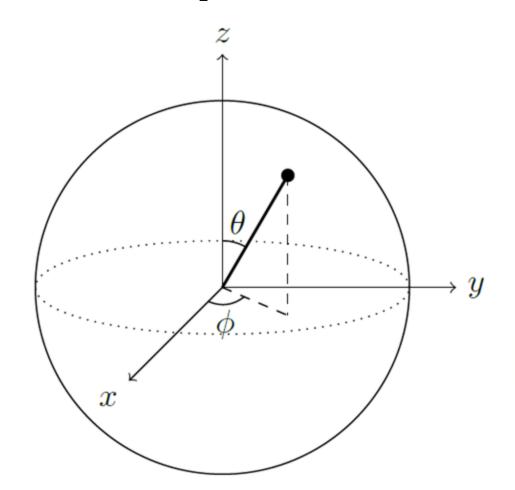
$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

and a qubit in the general state $\alpha |0\rangle + \beta |1\rangle$





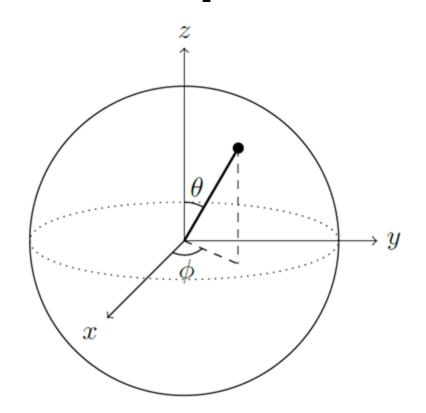


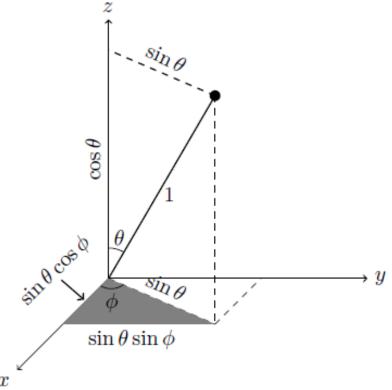


$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

$$\alpha = \cos\left(\frac{\theta}{2}\right), \quad \beta = e^{i\phi}\sin\left(\frac{\theta}{2}\right)$$

$$|\psi\rangle = \cos\left(\frac{\theta}{2}\right)|0\rangle + e^{i\phi}\sin\left(\frac{\theta}{2}\right)|1\rangle$$





$$|\psi\rangle = \cos\left(\frac{\theta}{2}\right)|0\rangle + e^{i\phi}\sin\left(\frac{\theta}{2}\right)|1\rangle$$

 $x = \sin \theta \cos \phi,$ $y = \sin \theta \sin \phi,$ $z = \cos \theta.$

Consider the following state

$$|a\rangle = \frac{\sqrt{3}}{2}|0\rangle + \frac{i}{2}|1\rangle$$

Where on the Bloch sphere is this state?

$$|\psi\rangle = \cos\left(\frac{\theta}{2}\right)|0\rangle + e^{i\phi}\sin\left(\frac{\theta}{2}\right)|1\rangle \qquad \cos\left(\frac{\theta}{2}\right) = \frac{\sqrt{3}}{2} \qquad \frac{\theta}{2} = \frac{\pi}{6} \qquad \theta = \frac{\pi}{3}$$

$$e^{i\phi} = \cos(\phi) + i\sin(\phi)$$

$$i = \cos\left(\frac{\pi}{2}\right) + i\sin\left(\frac{\pi}{2}\right) \qquad \phi = \frac{\pi}{2}$$

Consider the following state

$$|a\rangle = \frac{\sqrt{3}}{2}|0\rangle + \frac{i}{2}|1\rangle$$

Where on the Bloch sphere is this state?

$$|\psi\rangle = \cos\left(\frac{\theta}{2}\right)|0\rangle + e^{i\phi}\sin\left(\frac{\theta}{2}\right)|1\rangle \qquad \theta = \frac{\pi}{3} \qquad \phi = \frac{\pi}{2}$$

$$x = \sin\theta\cos\phi, \qquad x = 0 \quad y = \frac{\sqrt{3}}{2} \quad z = \frac{1}{2}$$

$$y = \sin\theta\sin\phi,$$

$$z = \cos\theta.$$

Check Your Understanding

Consider the following state

$$\frac{1}{\sqrt{2}} \left(|0\rangle + e^{i\pi/6} |1\rangle \right)$$

Where on the Bloch sphere is this state?

$$|\psi\rangle = \cos\left(\frac{\theta}{2}\right)|0\rangle + e^{i\phi}\sin\left(\frac{\theta}{2}\right)|1\rangle$$

$$x = \sin \theta \cos \phi,$$

$$y = \sin \theta \sin \phi,$$

$$z = \cos \theta.$$

Representing multiple qubits

Tensor product

$$\begin{pmatrix} x_0 \\ x_1 \end{pmatrix} \otimes \begin{pmatrix} y_0 \\ y_1 \end{pmatrix} = \begin{pmatrix} x_0 \begin{pmatrix} y_0 \\ y_1 \end{pmatrix} \\ x_1 \begin{pmatrix} y_0 \\ y_1 \end{pmatrix} \end{pmatrix}$$

$$\binom{0}{1} \otimes \binom{0}{1} = \binom{0}{0} \\ \binom{0}{1}$$

Representing multiple qubits

$$|00\rangle = \begin{pmatrix} 1\\0 \end{pmatrix} \otimes \begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix} \qquad |01\rangle = \begin{pmatrix} 1\\0\\0 \end{pmatrix} \otimes \begin{pmatrix} 0\\1 \end{pmatrix} = \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}$$

$$|10\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \qquad |11\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

The product state of n bits is a vector of size 2^n

Operation on multiple qubits: CNOT

- **Operators on pairs of qubits, one of which is the "control" qubits and the other the "target" qubit.
- If the control qubit is 1, then the target qubit is flipped.
- If the control qubit is 0, then the target qubit is unchanged.
- The control qubit is always unchanged.

$$\begin{array}{c} |00\rangle \longrightarrow |00\rangle \\ |01\rangle \longrightarrow |01\rangle \\ |10\rangle \longrightarrow |10\rangle \\ |11\rangle \end{array}$$

$$\begin{array}{c|cccc}
|00\rangle & \to & |00\rangle \\
|01\rangle & \to & |01\rangle \\
|10\rangle & & |10\rangle \\
|11\rangle & & |11\rangle
\end{array}$$

$$\begin{array}{c|ccccc}
CNOT & = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Operation on multiple qubits: CNOT

$$\begin{array}{c|c} |00\rangle \longrightarrow |00\rangle & |10\rangle & |10\rangle \\ |01\rangle \longrightarrow |01\rangle & |11\rangle & |11\rangle \end{array}$$

Superposition: the Hadamard gate

The Hadamard gate takes a 0 or 1 qubit and puts it into exactly equal superposition

$$H|0\rangle = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} \quad H|1\rangle = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix}$$

The *identity gate* turns $|0\rangle$ into $|0\rangle$ and $|1\rangle$ into $|1\rangle$, hence doing nothing:

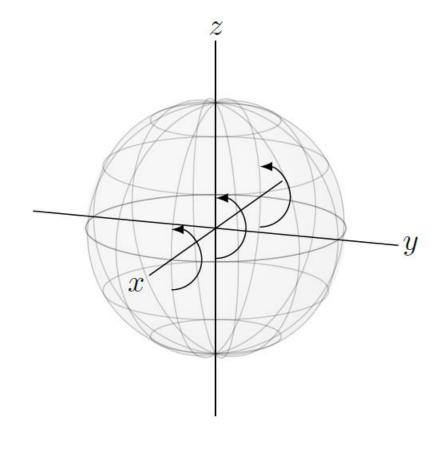
$$I|0\rangle = |0\rangle,$$

$$I|1\rangle = |1\rangle$$
.

The *Pauli X gate*, or *NOT gate*, turns $|0\rangle$ into $|1\rangle$, and $|1\rangle$ into $|0\rangle$:

$$X|0\rangle = |1\rangle,$$

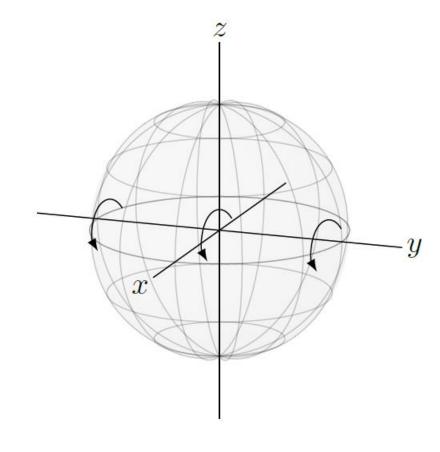
$$X|1\rangle = |0\rangle.$$



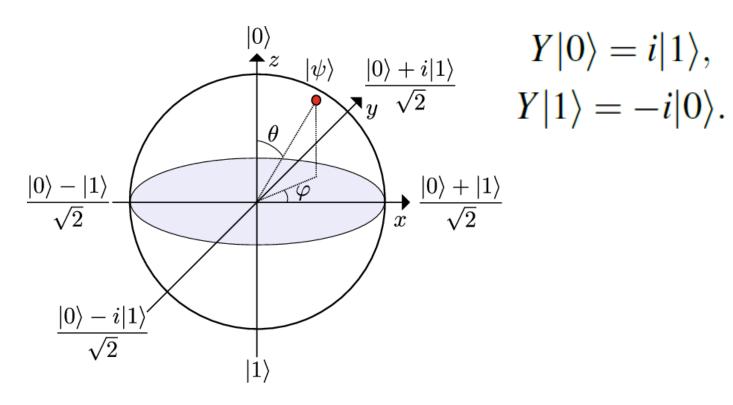
The *Pauli Y gate* turns $|0\rangle$ into $i|1\rangle$, and $|1\rangle$ into $-i|0\rangle$:

$$Y|0\rangle = i|1\rangle,$$

 $Y|1\rangle = -i|0\rangle.$



The *Pauli Y gate* turns $|0\rangle$ into $i|1\rangle$, and $|1\rangle$ into $-i|0\rangle$:



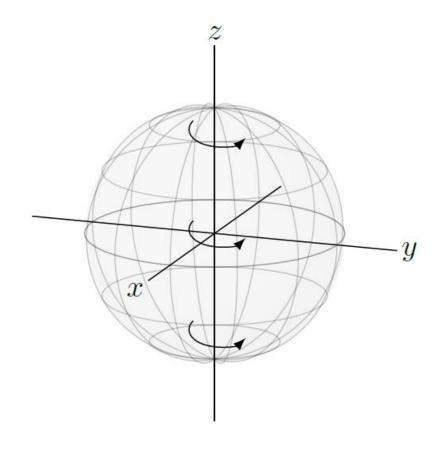
$$Y|0\rangle = i|1\rangle,$$

$$Y|1\rangle = -i|0\rangle.$$

The *Pauli Z gate* keeps $|0\rangle$ as $|0\rangle$ and turns $|1\rangle$ into $-|1\rangle$:

$$Z|0\rangle = |0\rangle,$$

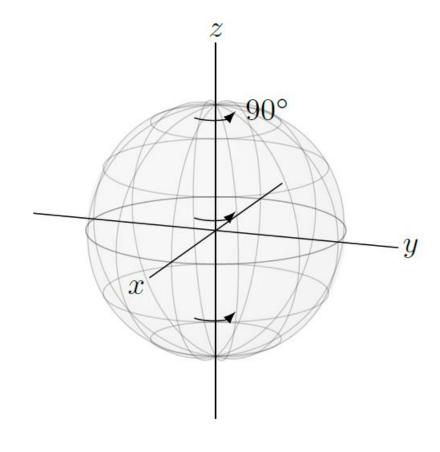
 $Z|1\rangle = -|1\rangle.$



Phase gate, which is the square root of the Z gate (i.e., $S^2 = Z$):

$$S|0\rangle = |0\rangle,$$

 $S|1\rangle = i|1\rangle.$



Quantum circuit

